Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jérôme Canivet, Bruno Therrien* and Georg Süss-Fink

Institut de Chimie, Université de Neuchâtel, Case postale 158, CH-2009 Neuchâtel, Switzerland

Correspondence e-mail: bruno.therrien@unine.ch

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.009 Å R factor = 0.028 wR factor = 0.059 Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[(*R*,*R*)-2-Amino-1-(*p*-tolylsulfonylamido)cyclohexane- $\kappa^2 N$,*N'*]chloro(η^5 -pentamethylcyclopentadienyl)iridium(III) chloroform solvate

The enantiomerically pure iridium title complex, $[Ir(C_{13}H_{19}-N_2O_2S)(C_{10}H_{15})CI] \cdot CHCl_3$, has the Ir atom in the *S* configuration, with a distorted octahedral geometry.

Received 28 August 2006 Accepted 29 August 2006

Comment

Recently, we reported an asymmetric transfer hydrogenation reaction in aqueous solution using η^6 -arene ruthenium Ntosyl-trans-1,2-diaminocyclohexane complexes as catalysts (Canivet et al., 2005). In order to extend our studies to iridium complexes, we synthesized the $[Cp*IrCl{(R,R)-L}]$ complex, (I) $[Cp^* = pentamethylcyclopentadienyl and LH = (R,R)-N-$ (p-toluenesulfonyl)-1,2-cyclohexanediamine], which crystallized from chloroform to give a polymorph of the known complex described by Murata et al. (1999). The bond distances and angles are similar to those found in the parent compound $[Cp*IrCl{(R,R)-L}]$ (Murata *et al.*, 1999), the rhodium analogue $[Cp*RhCl{(R,R)-L}]$ (Murata et al., 1999) and the nitromethyl derivative $[Cp*Ir(nitromethyl){(R,R)-L}]$ (Murata et al., 2002).

The single-crystal X-ray structure analysis of (I) reveals a distorted octahedral geometry for the Ir atom with Cp*, amino, sulfonamido and chloro ligands. Upon formation of complex (I) the iridium metal center becomes chiral. The iridium possesses the *S* configuration as observed in the ruthenium analogue $[(\eta^6\text{-mesitylene})\text{RuCl}\{(R,R)-L'\}]$ {*L*'H = (R,R)-*N*-(*p*-toluenesulfonyl)-1,2-diphenylethylenediamine} (Uematsu *et al.*, 1996) and [Cp*IrCl{(*R*,*R*)-*L*}].

In contrast with the parent compound which was crystallized from water, (I) was obtained in the presence of chloroform, thus giving rise to a completely different crystal packing. Indeed, two intermolecular hydrogen-bonded systems are observed: an (amino) $N-H\cdots O-S$ (sulfonamido) hydrogen bonding between two symmetry-related molecules and a (chloro) $Ir-Cl\cdots H-C$ (chloroform) hydrogen bonding between complex (I) and the solvent molecule (see Table 1).

© 2006 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids (H atoms omitted for clarity).

Experimental

 $[Cp*IrCl{(R,R)-L}]$ was synthesized according to the published method (Murata *et al.*, 1999). The complex was dissolved in chloroform at room temperature. Yellow crystals of (I) suitable for X-ray diffraction analysis were obtained after three days by slow evaporation of the solvent.

Crystal data

$[Ir(C_{13}H_{19}N_2O_2S)(C_{10}H_{15})Cl]$	Z = 4
CHCl ₃	$D_x = 1.736 \text{ Mg m}^{-3}$
$M_r = 749.60$	Mo $K\alpha$ radiation
Orthorhombic, $P2_12_12_1$	$\mu = 5.12 \text{ mm}^{-1}$
a = 9.4012 (5) Å	T = 173 (2) K
b = 12.8491 (7) Å	Needle, yellow
c = 23.7478 (17) Å	$0.45 \times 0.15 \times 0.08 \text{ mm}$
V = 2868.7 (3) Å ³	

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: multi-scan (*MULABS* in *PLATON*; Spek, 2003) $T_{\min} = 0.360, T_{\max} = 0.557$

```
(expected range = 0.428-0.664)
```

15012 measured reflections 5576 independent reflections 4830 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$ $\theta_{\text{max}} = 25.9^{\circ}$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0306P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.059$	$(\Delta/\sigma)_{\rm max} = 0.002$
S = 0.94	$\Delta \rho_{\rm max} = 1.53 \text{ e } \text{\AA}^{-3}$
5576 reflections	$\Delta \rho_{\rm min} = -1.82 \text{ e } \text{\AA}^{-3}$
313 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	2413 Friedel pairs
	Flack parameter: 0.024 (7)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C24-H24A\cdots Cl1$ $N2-H2A\cdots Cl1$ $N2-H2B\cdots O2^{i}$	1.00	2.36	3.357 (8)	178
	0.92	2.60	2.996 (5)	106
	0.92	2.26	3.063 (7)	145

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

All H atoms were included in calculated positions (C–H = 0.95 Å for CH_{arom}, 1.00 Å for CH, 0.99 Å for CH₂ and 0.98 Å for CH₃; N–H = 0.92 Å) and treated as riding atoms with the constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ applied. The highest residual electron density and deepest hole are both located at less than 1.1 Å from the Ir atom.

Data collection: *EXPOSE* in *IPDS Software* (Stoe & Cie, 2000); cell refinement: *CELL* in *IPDS Software*; data reduction: *INTE-GRATE* in *IPDS Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). We thank Professor H. Stoeckli-Evans for free access to X-ray facilities.

References

- Canivet, J., Labat, G., Stoeckli-Evans, H. & Süss-Fink, G. (2005). Eur. J. Inorg. Chem. pp. 4493–4500.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Murata, K., Ikariya, T. & Noyori, S. (1999). J. Org. Chem. 64, 2186-2187.
- Murata, K., Konishi, H., Ito, M. & Ikariya, T. (2002). Organometallics, 21, 253–255.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
- Uematsu, N., Fujii, A., Hashigushi, S., Ikariya, T. & Noyori, R. (1996). J. Am. Chem. Soc. 118, 4916–4917.